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ON THE STEADY-STATE PROBLEM FOR THE VOLTERRA-LOTKA
COMPETITION MODEL WITH DIFFUSION
Robert Stephen Cantrell and Chris Cosner

1. Introduction. The Voiterra-Lotka model for two competing species, with
diffusion, is given by the system

(1.1) U =K;AU + U[A-BU-CV]

Vi=K-AV+V[D-EU-FV]

where U and V denote the population densities of two competing species; the
equations are assumed to hold for (x,t) € §2 X (0,%0) with §£2 C R™ a smooth, bounded
domain. The terms A, B, C, D, E, F, Ky, Ky are all positive. In the present article we
will consider the case where they are constants; however, for some interpretations of
the model they may occur as functions. The values of Ky and K, describe the
diffusion rates of the two species, A and D the rates of reproduction, B and F the
self—fegulation of each species, and C and E the interaction of the species.

The model (1.1) has been investigated widely, see_[Z], ['3], (51, [8], [91, [11],
[13], [14]. A partial survey of the literatufe is given in [5] It is natural to study
(1.1) by examining the possible steady states; however, only the positive ones are of
physical interest. States in which both U and V are positive are called coexistence
states. In the present article, those are the states we shall investigate.

‘We study the system

(1.2} 0=K AU+ U[A-BU-CV]
0=K-AV+V[D-EU-FV]
in &, Ulyn =0, Vlzn =0.

We note that the corresponding system with homogeneous Neumann boundary
conditions was investigated in [3], {11], where rather precise conditions were given

for the existence and stability of coexistence states. In that case, such states are
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constant on £2.

In the case of (1.2), sufficient conditions for the existence of coexistence states
are given in [8] and [11]; in the special case K;=K, and A= D, necessary and
sufficient conditions for the existence of such states are given in [5].In [2], 2
bifurcation analysis is performed on the system (1.2) when either A or D is varied
while the remaining parameters are held fixed. Solutions to (1.2) with both Uand V
positive are shown in [2] to bifurcate from the semi-trivial solutions where one
component is positive and the other is zero; hence coexistence states arise via
secondary bifurcation, since the states with one component zero and the other
positive can be viewed as bifurcating from the zero state. In [11], the conditions
A>K A and D > KqAy (where )\1 is the first eigenvalue for -A with homogeneous
Dirichlet boundary conditions on £2) are shown to be necessary for the existence of
coexistence states.

In the present article, we sharpen known necessary conditions for the existence
of coexistence states by extending some results of [5] to systems where K #=Kq
and/or A # D. We also perform a local bifurcation analysis which is somewhat more
detailed than that of [2]; specifically, we obtain fairly precise quantitaive ESUIMALEs
of where bifurcation can occur, determine in some cases the direction of bifurcation,
and obtain additional qualitative information about the bifurcating solutions by
viewing (1.2) as a two-parameter bifurcation problem in A and D The bifurcation
analysis also gives additional information on necessary conditions for the existence of
coexistence states.

We use integration by parts via the divergence theorem to obtain many of our
bounds on the regions of nonexistence for coexistence states and on the values of A
and D for which bifurcation can occur. The bifurcation analysis is based on the result
of Crandall and Rabinowitz [6] on bifurcation from a simple eigenvalue. In addition,
much of our work relies on the theory of the single equation

(1.3) 0=Aw+w(a-q{x)- w} in g2,

w>0in 2, wizn =0

and its linearization.

To facilitate our analysis, we rescale the system (1.2). Dividing out K; and Ko,
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letting u = aU and v =V, and making the appropriate choices of « and § rescales the

system (1.2) to the form
(1.4) -Au=ula-u-cv]
-Av=v{d-eu-v]
in 2, uizgn =0, vizn =0.
In what follows we shall restrict our attention to (1.4).

As noted above, we require some infonnation about (1.3). The necessary results
are summarized in the following lemma:

LEMMA (1.1). Suppose that q(x) is a smooth function from § to R. Then the
lowest eigenvalue, N1(q), of the problem

(L.3) -A¥ +q(x)¥ = AV in Q, ¥l =0
is simple, with posz:tive eigenfunction. Furthermore, the following statements hold:

(1) If qp(x) <qy(x) forall x €82, A (q1) <A y(ay).

(il) Equation (1.3) has a unique positive solution for a > A1(q) and no positive

solutions for a <\(q).

(i) If a) = a9, q1(x) <q5(x), and wy, wq are positive solutions to (1.3)

corresponding to ay, qy, and a4, q9, respectively, then wy = wo.

REMARKS. 1. The assertions of the lemma are all either standard results or
follow directly from the theory of sub- and super-solutions, as discussed in [12]. A
discussion is given in [2], §2.

2. Another implication of Lemma (1.1) and the theory of sub- and
super-solutions is that given any positive value of a for which there exists a subsolution
w to (1.3) with 0< w < a, then since w=a is a super-solution, there exists a solution
w >0 for that value of a. Since positive solutions only exist fora > A1(q), it follows
that sub-solutions can only exist for a >\ {(q).

3. We will frequently refer to the solution of equation (1.3) with q(x)=0.
Following [5], we denote that solution by 6,. That éi_{)n}\_{ﬁa ={ follows from a
bifurcation argument.

We shall also make use of the following lemma:

LEMMA (1.2). Consider the function g: R, X (7\1,06) - R given by g(e,a)=
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7\1(36 a)- Then g has the following properties:
(1) e<e —glea) <glea)
(i) a<a' - gle,a)<glea)
(i) g(l,a)=aforalla>A,.
iv) g(e a): Ry X {a} =R is continuous. Furthermore, if 2> 7\ is fixed and
h: R{.~> C2+°‘(S?.) is given by h(e) = ¥, where

A¥, e ¥, = Ap(ef ¥, v, >0,and fﬂ\yg =1,

then h': Ry +C%+°‘(S—i) is also continuous.
PROOF. (i) and (ii) are consequences of Lemma (1.1). (iii) follows from the

definition of §,. There are a number of ways of establishing (iv). We have chosen to

present a particularly elegant proof, due to our colleague Alan Lazer [7], and based
on the Implicit Function Theorem. To this end, let E= C%m(ﬁ) X R and
F= Ca(S—Z) X R, 0<a< 1, and consider a mapping ®: E X R~ F given by &(v,s,8) =
(-Av +ed v -sv !lvuz (§)-1). Note that & is a continuous map and that the

linearization of @ w1th respect to E at (v,s,e), denoted Dltb(v,s e), is given by

Dl,:u\' .’:’::)( .’t) — { Ave s eeaxu ~ o . hr' 7 _!' VW\
If vg= and 80 = 7\1(80), 1®(VO’SO’GO): E - F is a linear homeomorphism.

That such is the case will follow from the open mapping theorem, provided we show
that D1 ®(vq,s0.eq) is 2 bijection. Suppose then that leb(\lfeo,)\l(eo),eo)(w,t) 0,0).
Then -Aw + eOBaw- ?\l(eo)w= t\IIEO, W‘asz =0, and IQW\IIEO = (. The Fredholm
alternative implies th\Ilezo =(0. Hence t=0 and w= c‘lfeo. Since IQW\I!eO =0,¢c=0
and so w =0.

Consider now the pair of equations

(1.6) -AW+806 w - Xl(eo)w t‘I’ O

(.7n 2 fﬂw@eo =r.

Let t=-f h¥, e Then f (t\I! +h)\¥ =(. Hence (1.6) has solutions w of the
form z + k\I/e , where z is umquely determmed and [ z\I’eo = (0, We may then obtain
a solution to (1.6) - (1.7) by choosing k=1/2. Hence D ®(vg.spseq) is 8 linear

homeomorphism, and (iv) follows from the Implicit Function Theorem.
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As we have indicated, one of our aims is to give quantitative information on the
locus in ad parameter space of the secondary bifurcation phenomena. We pause
briefly to note the significance of such information. If the parameters ¢ and e in (1.4)
are held fixed, it is a consequence of the results of [2] that coexistence states emanate
from the semi-trivial (extinction) states (a,d,f ,,0) and (a,d,0,0 d) along the curves I'y =
{(an(ed): a=A;} and T'g= {(A\{(cf4).d): d=>A ]} in a-d parameter space. By
Lemma (1.2), these curves are strictly monotonic. Suppose now that a > is fixed.
Blat and Brown show that a global continuum of coexistence states emanates from
(2,d,0,,0) when d=xq(efl ;) > A1, and, furthermore, that the only global possibility is
that the continuum links to the sheet (2.d,0,8 3). The strict. monotonicity of the curves
I'e and T guarantees that there is only one d* >Ay such that kl(ced*) =a. Thus
coexistence states must exist for (a,d) with d in the open interval joining )\1(66 ) and
d*. Hence coexisjtence‘ states exist in the region bounded by I, and T, and
investigating quantitati\.rely the locus of these sets in a-d parameter has obvious
significance.

Now let D= {(a,d)ERZ: a>Ag, d>2Aq}, and let D, = {(a,d)ED: d>a} and
D_= {(a,d) €D: d < a}. The following result is a consequence of Lemma 1.2, and is
perhaps the most basic observation on the location of T, and T'.

PROPOSITION 1.3, (i) Ife<|, I CD;ife>1,I CD,

(il) Ifc<1, T, CED4ifc>1, T . CD.

Finally, we note that in contrast to the case of (1.3), the questions of uniqueness
and direction of bifurcation of solutions to (1.4) remain largely open. Some results on
those questions are obtained in {5] and the present article, but much remains to be
done.

2. Estimates. In this section we derive various estimates on the ranges of
parameters for which coexistence states exist and on the eigenvalues of the linearized
problems that occur in the bifurcation analysis. We will assume that the system has

been scaled so that it has the form (1.4), that is
Au+ufa-u-cvl =0in Q
Av+vid-eu-v] =0

u=v=0ondf, uv>0in .
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As is noted in [5], it follows from results of Pao [11] that (1.4) can have no solutions
unless a>A;, d>2Aq. The maximum principle implies that u<a and v<d. The
following result provides additional information on the values of the parameters g, c,
d, and e for which solutions to (1.4) cannot exist.

THEOREM (2.1). If a, ¢, d, e are positive constants, the. system (1.4) cannot
have solutions unless one of the following conditions holds:

() c<1,e<1,d<alc, and d > se. (If the inequalities for cand e are made

strict, then a and d must satisfy the strict versions of the inequalities, also.)

(i) e<1<c,d<a,d> aelc,

(iff) e <1 <e, d<aefc,d>a,

(iv) c>1,e>1,d<ae, d>afc.

REMARKS. Some of the conclusions of this theorem were noted in [2] and
[51. In particular, it was shown in [5] that no solution for (1.4) is possible if a=d
and e< 1 <corc<!<e; and it was shown in [2] that if c=e=1 then (1.4) has
solutions only if 2 = d. This first result follows from (ii) or (iii) above, the second from
(i). The proof of the theorem uses ideas similar to those used in proving Theorem 3.1
of [57; specifically, the proof is based on integration by parts.

PROOF. We multiply the first equation in (1.4) by v and the second by u and
integrate over 2. Integrating by parts using the divergence theorem and subtracting

the second equation from the first yields
2.0 0 =fﬂuv[(a- d)-(l-eu+(1-cyv].

If the expression D = [(a -d)- (1 -e)u+(1-c)v] is strictly positive or strictly negative
on , then by (2.1) we cannot have a solution of (1.4). Hence we must have
s&p D=0 and i?sz < 0. Suppose c,e < 1. Then iyzp D<a-d+(l-c)d=a-cdsince
u=0 and v<d on f2. So 0<55121p D < a-cd. Similarly, O>isr_1sz> a-d-(l-ela=
ae - d. Thus, when ¢,e < 1, we must have d < a/c and d > ae for any solution to exist
for (1.4). If c,e <1 then a and d must satisfy the corresponding nonstrict inequalities.
Ife<1<cg, then on S—i, D>a-d-(l-e)a+ (l-e)d= ae-cd,so 0>i&fD>ae-cd
or d > ae/c. Also from (2.1) we have

(a-a) [ uw=(1-¢) fﬂu2v+(c- 1) fﬂuv2>0,
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so since uv>0 in £, a-d>0 or d<a. Similarly, if c<1<e, then d>2a and
d < ae/c. Finally, if c,e > 1, then on € we have D> (a -d) + (1 -c)v>a-de,s0 0>
i?sz > a-dc and so d>afc; aiso, D<(a-d)- (I-e)u < ae-d on ﬁ, S0
0< sStip D < ae - d or d < ae. This last estimate completes the proof.

In a later theorem we will obtain a somewhat sharper version of the estimates for

the case e,c < 1. First, however, we must study the eigenvalue problem
(2.2) -AV +e0 ¥ =A% in §, ¥ = 0 on 982,

As in Lemma 1.1, we denote the first eigenvalue by )\l(ee a), or by M(e) when a is

held fixed, and the first eigenfunction by ¥, where ¥, is normalized via
2.3) J prg =1.

We obtain the following result:
THEOREM 2.2, Ifa> 7\1(0), then \y(ef,) satisfies the estimates:
() If0<e<1,then
ae + ?\1(0)(1 -e)< kl(eGa) < min(ae + )\1(0),a)

(and in fact Xy(ef ) < a)
(i) Ife=1, then
M@ =a
(iii) Ife> 1, then
a <?\1(eé)a) <ae+(1- e)hl(O).

PROOF. In the introduction we showed that when 2 > ?\1(0), we have )\l(e) <a
for0<e<l, )\1(1)= a, and )\1(6) =afore> 1. Ifwefixe= | in (2.2), multiply by

‘1167, and integrate by parts via the divergence theorem, we obtain

(2.4) )\l(el)fﬂ\lf

= Wo (AT e [ 0,Y Ve

51\1/62

=AY W Fey [ 8T Yo

=)\1(e2) f‘yel‘yez +(ep-eq) f Ga\lfel\lf
If weletey =e and ey = 0in (2.4) and use the fact that 6, <a, we obtain the estimate

M) [ ¥e¥o < (0(0) +20) [ W T
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so that A (e) <ae+A;(0) for any e 2 0. Also, (2.3) may be rewritten as

(2.5 Ihlep) -Aq(epl/leg - e9) = U fa¥e e WU e o)
As noted in the introduction, A1(e) and ¥, depend differentiably on e;so if we-take
e;=e let ey e, and use (2.3) then (2.5) yields

¢ ) N .

(2.6) Ri(e) = fQBa\Ife > 0.
It follows immediately from (2.6) that hl(e)> afore>1 and )\l(e) <afore<|.
Also, it follows from (2.2) and (2.6) that

N[(e) = (1fe) f [Wel¥, + A @¥2],

Q
"

(2.7) A{(e)-Nqlee = (1/e) fﬂ(V\I/elz.

Since the variational formula for the first eigenvalue of the Laplacian together with
(2.3) imply the bound
Iy V¥ 12 >1,(0),

it follows from (2.7) that A{(e) - A ;(e)/e < -\;(0)/e, or

(2.8) [Aqeel” <A (0)e?.
If e < | then we may integrate (2.8) from e to 1, obtaining a - A(e)/e <?\1(0)(i - 1/e)
or Ay(e) = ae +(1-€)A((0). If e> 1, then integrating (2.8) fromr' | to e yields the
reverse inequality, 7\1(3) <ae+(l- e))\l(O), which completes the proof.

We may nowbbtain. a sharper version of_ one of the-estimates in Theorem (2.1).

THEOREM (2.3). If a, ¢, and e are fixed, with c,e < 1,- and if d < ais such that
a solution to (1.4) exists, then

(2.9) u=((1-¢c)/(1-ce)lf,, v<[(1- e)/(1-ce)lfd,
and

(2.10) d=A([e(1-c)/(1 - ce)l8,) = [ae(1 - c) + A (0)(1 - €)]/(1 - ce).

REMARKS. This theorem, like Theorem (2.1), gives information on how far
solutions bifurcating from d = Xy(ef ;) can “bend backward.”

PROOF. If u and v satisfy (1.4), then since u > 0, it follows from Lemma (1.1)
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that v <w, where w is the solution to Aw + w[d-w] =0in £, w=0o0n 382, w >0 1in
£2; that is, w = ﬁd. Since d <3, v< < 8,. Then, again by Lemma (1.1), u >z, where z is
the solution to
(2.11) Az+z[a-cf,-2] =0in2,2>01in §, z=0 on 352.
However, the unique solution to (2.11) is z=(1-c¢)f,, so u=(l-c)f, We can
repeat the argument; in general, if k<1 and u=> >k, then v is a subsolution to
Aw + wld - ek, -wl =0, w>0 in £, w=0 on 302 and hence to
Aw + wla- ekf,-wl =0, w>0 in £, w=0 on 3Q. Then Lemma (1.1) implies that

)\l(ekea) and that v<<(1 - ek) . 1t then follows thatu=y=(l-c+ cek) ,, since
y is the solution to Ay+y[a-c(l -ek)G -yl =01in £, y=0 on 382, y>0 in 2.
Starting with k=1-¢, we obtain u= [l -c+ce(l - c)]6 or uz (1-¢)[1+celb,.
Letting k =(1-c¢)[l +ce], we obtain u = (l-c+ce(l-c)l +ce])f,=
(1-¢c)[1+ce+ c:ez]ea. Proceeding by induction, we have u=2(1-¢) T 1\ O(ce) 6 =
[(1-¢)/(1-ce)]f,. Then v<< [(1-e)/(1-ce)]B, and d>N{([e(l-c)/(]-ce)]f,). By
Theorem (2.2) we have d> [ae(l-c)+ A(0X(1 - e)]/(1 - ce).

3. Bifurcation results. In this section we consider the local character of the
componentwise positive solutions to (1.4) which bifurcate from the sheets {(a,d,6 2:0):
a>A;, d€ER and (2,d,0,03): a€R, d> 1} along Te = {(aX)(e0,).6,,0): a> N}
and I, = {()\l(cﬁd),d,o,ed): d>)\l}, respectively. To this end, consider again the
system (1.4), i.e.

A

-Au = au - u~ - cuv
2

-Av = dv - v= - euv.

The substitution w=1u -84, v =v gives rise to the equivalent system

3. {-Aw +(20, - a)w = -6 v - w2 - cwy

-AAv + eBaVé dv - v2 -ewv.
A computation shows that the linearization of (3.1) about (w,v) = (0,0) is given by

(3.2) |-Ax+ (26a -ax = -8,y
-Ay +ef,y = dy.

Observe that if -Az + (26, - a)z = Az, with > 0 on 2, fﬂzz =1,

[ (A28, + fﬂ(zeg ~ab )z =N [ b,
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or

[ H00 ) + fﬂ(zeg -a o= N[ 20,

Hence fQO%Z = A fgzea whence it follows that A > 0. Thus by [1], [-A+ (26, - a)]‘1
exists and is a compact positive operator.
Thus (3.2) is equivalent to the system
(3.3) (x=[-A+(20,- 1 (<0, -
{y= dl-A+ e@a]‘ly.
Let Ay = [-A+euy]™], Ay = [-A+(26,-2)]"!, and Myz = -cf,z. Then (3.3) may be
equivalently expressed as

0 A-M
v Xy a0 0y Xy Ly 2%ca, x,
7 \y! d\o Allky/ * \O O /\y/-
AsM

0
If we nowlet By = (0 0 ) and By = ( ca)’ BI and B, are compact on the
9_ Ay « 0 0 2
Banach space E = {C(l)’a(ﬂ)]z. Thus I- dBy - By isa Fredholm operator on E, with
index 0. Furthermore, since ker(I - 7\1(39 2B1 - Bp) has dimension 1, Al(ef) ) will be a
sim_ple eigenvalue of the pair (I - Bp,B ) (see {41) provided

(3.5) By# € R(I-By-A[(ef,)BY),
where (¢} = ker(I - A{(e6 )B{ - By). Suppose then
x=[-A+ (20, - )] (-cupy)
{y—-xl(eeammwarly

and y # 0. Then

0 0

Xy 0y =

But
' o x*[AH20 0201 et )
(1-By - dBC) = NS
{I-d[-Atef ] }y*
Hence if Bl(;) ER(-By-A(ef)B), y ER( - ANleb)l-A+ eﬁa]'l). However, {y) =
ker(1 - \{(e8 )[-A + e0,]°1), a contradiction.
From [4], the preceding analysis justifies an application of the

Crandall-Rabinowitz Constructive Bifurcation Theorem [6]. Let 2>y, ¢>0, and
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e > 0 be fixed. Then (a,d,0,,0) isa solution of (1.4) for all d € R. From [6], there are
89 >0 and smooth functions d: (-8,80) = R, u: (:80,80) = CHH&, v: (-8g.80)
C(l)’o‘(f_l) such that

d(0) = Aq(ed ,),

u(s) = 0, +swqg +;(s)

v(s) = ) +3(s),
where

(vg) = ker(T - A1 (e )[-A + ef,17D),
vo(x)>0ifx €8,
J QV% =1,
wp = [-A+ (20, - 9017 (-¢8 ,vg),

W)l = olsl),

1,06
CO (£2)
and

syl = o(ls).

SR
Furthermore, in a sufficiently small neighborhood of (a,kl(eﬁ 2):03.0) (in {a} X R X
C(l)’o‘(ﬁ) X C(l)’o‘(ﬁ)), the four-tuples (a,d(s),u(s),v(s)), Is| < 8 are the only solutions
to (1.4) other than (2,d,0,,0). In particular, we have componentwise positive solutjons
to (1.4) when s > 0.

We now let \(s) = d(s) - d(0) and calculate A(0) (cf. [10]). To do so, we need

only consider the equation
(3.6) -Av(s) = d(s)V(s) - v2(s) - eu(s)v(s).
Equation (3.6) is equivalent to
(3.7) [-A + 8, - d(0)] (svg + V() = N(s)(sv + ¥(s)) - (svg + W)
- e(svg + V()8 5 + sw £ - 8,).
Differentiating (3.7) with respect to s yields
(3.8) [-A+ef, - d(0)] V() = N(s)(svg + V() + Ms)(vg + V'(S)

- 2svg + V(S)(vg + V'(s)



e e Smebamn e v 1o =+ e on < i b b o

348 ROBERT STEPHEN CANTRELL and CHRIS COSNER

- e(vg + V())swg + W)
- e(svg + W)wg + W' ().
If s = 0, the right hand side of (3.8) is zero. Hence [-A+efl 4 - d(O)]?f"(O) = (. However,
from [6], it follows that (f\;/(s) 7(5)) may be assumed to lie in R(I-d(0)B - B2) Asa
consequence, v(s) & R - )\l(ef) a)[ A+ ef ]'1) or, equivalently f v(s)vo = (. Hence
f v (O)VO =0 and so v'(0) = 0. Thus v'(0) = vg and Y'(0) = v"(0).
If we differentiate with respect to s once more and evaluate at s = 0, we obtain
(3.9) (-A+eb,- dO))V'(0) = 2N (0)vg - 2v6 - 2evg(wg + w'(0)),
and a computation will show w'(0) = 0. Thus
(3.9) [ A+ ey d(0)V" (0)vg = 2X'(0) fﬂv% -2 fﬂvg -2 fgv%wo.
Since (-A+ef, - d(0)) is self-adjoint, (3.9) yields
(3.10) N(©) =73 * e [ Vg%0
Let ¢ be defined by ¢g= [-A+(26,- a)]‘l(G aV0)- Then (3.10) may be expressed
(3.11) N'(0) = I, vg —ecf v5¢0.

Since vo>0 on € and [ VO =1, vg and consequently ¢q are determined as
functions of e. The following result is then an immediate corollary of formula (3.11).

THEOREM 3.1. Ife > 0is given, N'(0) =0 if and only if
=1 3 2
| (3.12) e=g S vple /] o040

We may give some further resuits on the sign of A'(0) in terms of c and e. From
Lemma (1.2) hm f vo(e) f 7 where -Ay=\yy, >0 on £, and f 7 =1,
Furthermore, hm / v0<e>¢0(e) fqrilA (20, a)]'l(ﬂa*f) Then
h_r_x)10 ef vo(e)¢0(e) 0 The following result obtams

THEOREM (3.2) There exist eqg €(0,1) such that 0 <e <eq implies | vo(e) >
e fﬂvb'(e)qbo(e). Thenife € (O,eq)and c € 0,1, N'(@)>0.

Assume in that which follows thate < 1. Then

(3.13) -Avg + (20,-ayg = ()\l(gﬂ e ajvg + (2-e)8 vg

From the definition of ¢q, it follows from (3.13) that
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(3.14) [-A+(20,-2)](epg + vg) = (20, + Ay (eb ) - a)vg.
Since e <1, Aj(ef ,) < a. Hence
0<epg+vg=[-A+(20,-2)]71(20,+A(ed,) - a)vg
< [-A+(20,-2)]71(20,v0)
=29
Thus v <(2- e)¢0. The following result now obtains.

THEOREM (3.3) Suppose e < 1and ¢ > 2/e - 1. Then \'(0) <0.

PROOF. N'(0) = fjvglvg - cedg) < [ 512~ e~ ce)lgg <0.

4. Conclusions. As we noted in Section 1, if ¢ and e are fixed positive constants,
the region in a-d parameter space bounded by the curves T'p= {(aJ\}(eG )
a >)\1(0)} and T', = {()\l(ced),d): d ,>/>\1(0)} is 2 region in which coexistence states
for (1.4) exist. The estimates of Section 2 serve several purposes. First, they provide a
computational éstimate on this region of existence. For instance, if c> 1 and e > 1,
Theorem 2.2 shows that region bounded by I'. and T, is contained in the wedge in D
(see Proposition 1.3) given by the lines a=dc+ (1 - c))\l(O) and d = ae + (1 - e)A;(0).
Theorem 2.2 also demonstrates that the region bounded by I, and I, does include, as
should be expected, the regions of existence found in previous investigations. In the
case ¢ <) and e < I, the region includes the region {(a,d): a=d,a> )\1(0)} found in
[5] and the region {(a.d): a>>\1(0)+dc, d>>\1(0)+ae} found in [11], [8]. If
¢ > 1 and e > 1, the region of existence includes the diagonal again, as is also shown
in [5].

Sharper necessary conditions for existence are provided by Theorem 2.3 in case
¢ <1 and e < 1. We may state this result as

THEOREM 4.1. If ¢<1 and e <1, and a>\{(0) and d > \((0) are such that
(1.4) has a solution (0,V) with u>0and v>0on 82, then

d > [ae(1 -c) + A (0)(1 -e)1/(1 - ce)
and
a > [de(l-e)+ A (0)] - c)]/(1 - ce).
Theorem 2.2 also shows that if the growth rates a and d are chosen so that a > )\I(O)

and d > X;(0), it is possible to ¢ and e sufficiently small so that a coexistence state
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xists for (a,d).

Ifc>1lande<lorc<l!and e>1, the curves I'; and T'g both lie entirely on
»ne side of the diagonal in the a - d plane. This result is consisteqt with Theorem 3.1
yf [5]. The physical interpretation is that if one of the species affects the other
ufficiently more strongly than it is itself affected, then the second species will be
iriven to extinction unless it compensates via a higher rate of reproduction.

In both [2] and [5], it is demonstrated in case a= d and c=e=1 that
soexistence states are not unique. We use our information on the location of
secondary bifurcation (in a-d space) to extend this biologically significant result. We
first need the foilowing lemma. “

LEMMA 4.2. Ler ¢> 0 and e >0 be fixed. Suppose (an,dn,un,vn) is a sequence
of solutions to (1.4) with uy; >0 and v, >0 such that (au,dn,un,vn) converges to
(3,d,0 5,0). Then d. =X\ (ef,).

PROOF. By (l. 4),

-Auy, =aguy - u - cupyvy
N 2
‘LAVn \.an '\au»n n' v .

(4.

The second equation of (4.1) can be written as
(4.2) (-A+eu v, = dvy - vE.

Since v, >0, vt > 0. Hence

ce@)
(-A+eup)w, = dyWn " WnVp
where w, =V / flvll. We have A+ eun)“1 compact on Cé’a(ﬁ) and
(4.3) wy= (-A+euy )' d nVn - Wn"n]
Consider (4.3). Since un—*O in C0 Q) as n->os, (A+eun)‘1 > (-A+ef,) L ag
compact operators on C o‘(Q) Standard compactness arguments now imply the

istence of a 0, llw — =1 h that
existence ofa w20, || ”C(l)’a(ﬂ) suc

(4.4) w=d(-A+ed ) w

Equivalently,
- Aw = dw - ef yw.

Y o I e N 2D N

P
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THEOREM 4.3. Suppose an > Aq(0) and eq> 1 are fixed. Then there exists
€ (0,1) such that if € > 0 is given, there exists d* € ()\l(eoﬁao) - 6,)\1(806a0) +€)
such that (1.4) has ar least two solutions with u>0and v>0 in § for (a.d,c,e) =
(ao,d*,CO,eo).

PROOF. Since eg> 1, we have that )\l(eoﬁao) > ag and the point
(ao,kl(eoﬁ ao)) lies on the curve where bifurcation from the extinction states
(2,d,0,,0) occurs. In fact, it is the only such point of the line a= ag. Let
dg = )\l(eoeao). Then A{(0) <ag <dg. Consider now the function g(c) = KI(CGdO),
for c€[0,1]. Then g is continuous on [0,1] by Lemma 1.2(iv) and Theorem 2.2(i).
Moreover, g(0) = A{(0) and g(1) = dg. Hence there exists cg €(0,1) such that ag =
A](coﬁdo). Since the function d - )\l(coed) is strictly increasing in d for d > A4(0),
dqg is the unique.value of d for which Ay(cnf 4) = 2. Consider (1.4) with c=cpy and

0 1Y a 0 0
e = eq. Thus results of [2] and Lemma 4.2 guarantee that if a = ag is held fixed, the
continuum of positive solutions to (1.4) which emanate from the extinction states
(ag,d,d 5,0 at (ao,)\l(eoeao)), wiich we denote by C, must meet the extinction states
(2,d,0,8 3) at a point (A1(cgf g),d). By the choice of co» d=dg. Hence (ag,dg) =
(80,>\1(€05a0)) = (7\1(00% ),dg)-

It is now easy to obtam the result. If there are dlstmc’c (u'v")and (u"’v'") with u' >0,
u'>0, v>0,v'>0 and (ao,do,u D, (ao,do,u V') E C, there is nothing to show.
Assume then that there is at most one such solution to (1.4). There exists €' & (0,¢)
such that C| = B((ao,dO,GaO,O);e') NCand Cy= B((ao,dO,O,Bdo):e') N C are disjoint,
and, moreover, Cy is an arc in {ao} X RX [C(l)’o‘(.(—?,)] 2 (here B((ao,d u,v):8) =

Adu' v id-d + fu-d —
Cy and C: into R either both intersect [do-e do; or (do,d0+e ], the result is

+ Jiv-v'll < 81). If the projections of
established. Suppose with no loss of generality then that C projects into [dg,dg + €']
and C, projects into [do - e',do]. letde (do,do +¢€'] be such that (a,c’i.,E,\T) € for
some u >0and v> 0. Since Cy is an arc, there exists at least one solution to (1.4) in
Cy for each d& (dO,E). However, since C is connected, C;{ N C7 =0, and the
projection of C is contained in [dg - e',dO], there must also be a solution to (1.4) in
C\C| for each d € (dg,d), which establishes the result.

Finally, we note that the results on the direction of bifurcation in Section 3
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refine the analysis obtained in [2] by giving 2 more detailed picture near the

bifurcation curves.
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